Enhanced *p*-Terphenyl-Catalyzed Photoreduction of CO₂ to CO through the Mediation of Co(III)-Cyclam Complex Shinjiro MATSUOKA, Kiichi YAMAMOTO, Chyongjin PAC, and Shozo YANAGIDA* Chemical Process Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565 Efficient p-terphenyl-catalyzed photoreduction of CO_2 to carbon monoxide can be achieved by combination with Cobalt³⁺-cyclam (cyclam = 1,4,8,11-tetra-azacyclo-tetradecane) as an electron mediator in organic solvent. Carbon dioxide fixation has been a subject of active interest in view of the global greenhouse effect. In particular, electrochemical and photochemical reductions of CO_2 have been extensively studied. Recently, we reported that p-terphenyl induces photoreduction of CO_2 to formic acid (HCO_2^-) and a small quantity of CO under >290-nm irradiation in N,N-dimethylformamide (DMF) containing triethylamine (TEA) as a sacrificial electron donor. Taking into account the role of cyclam metal complexes as mediators for electroreduction of $CO_2^{-3,4}$ we investigated p-terphenyl-catalyzed CO_2 photoreduction in the presence of metal cyclam complexes as electron mediators in order to evaluate their abilities of electron mediation in this system. As cyclam metal complexes, [Co(III)-cyclamCl₂]Cl (Co³⁺-cyclam) and [Ni(II)-cyclam]Cl₂ (Ni²⁺cyclam) were prepared according to literatures.⁵⁾ When a CO₂-saturated solution [2 cm³ AN, 0.5 cm³ methanol, and 0.5 cm³ TEA] containing p-terphenyl (2 x 10^{-3} mol dm⁻³), [Co(cyclam)Cl₂]⁺ (1.7 x 10^{-3} mol dm⁻³) was irradiated in a Pyrex tube (8 mm in diameter, 200 mm in length) with a 500 W high pressure Hg lamp, CO was formed with a less quantity of HCO₂ and H₂ (Table 1, run 1). Methanol was added to dissolve cyclam metal complexes in the reaction system. When DMF/methanol was used instead of AN/methanol, the formation of HCO₂ was suppressed and only CO was found as a reduction product from CO₂ (run 2). Mass spectroscopy and $^{13}\text{C-NMR}$ confirmed the formation of ^{13}CO (m/z = 29) and $H^{13}\text{CO}_2^-$ (δ = 169.3 ppm) in the photoreduction of ${}^{13}CO_2$. In the absence of any one of CO_2 , light, TEA and p-terphenyl, neither CO nor HCO_2^- were formed. We reported in our previous paper that p-terphenyl-catalyzed photoreduction of CO_2 in DMF leads to the effective formation of HCO₂ with a small quantity of CO, while the activity in AN is inferior to that in DMF.²⁾ However, the presence of methanol in both cases suppressed the photoreduction of CO₂ (run 3, 4). These observations indicate that the introduction of Co³⁺-cyclam leads to efficient photoreduction of CO₂ even in AN/methanol system. It is also worth noting that the selectivity for the formation of CO in both AN/ and DMF/methanol systems was enhanced. On the other hand, contrary to our expectation, neither CoCl, (run 5) nor Ni²⁺-cyclam (run 6) functioned as electron mediators for the present reduction of CO₂. The latter result is in quite conflict with its role of electron mediator in the electroreduction of CO₂.^{3,4}) It was reported that tetraazamacrocyclic complexes of cobalt and nickel work as electron mediators in | Run | Solvent | Co ³⁺ -cyclam | CO/
µmol | HCO ₂ ⁻ /
µmol | H ₂ /
μmol | Product Ratio | | |-----|----------|--------------------------|-------------|---|--------------------------|---------------|--------------------| | | | | | | | CO/HCO2 | $(CO+HCO_2^-)/H_2$ | | 1 | AN/MeOH | a) . | 24 | 12 | 3.7 | 2.0 | 9.7 | | 2 | DMF/MeOH | a) | 27 | 0 | 4.1 | - | 6.6 | | 3 | AN/MeOH | 0 | 0 | 0 | 0.02 | - | 0 | | 4 | DMF/MeOH | 0 | 0.20 | 0 | 0.09 | - | - | | 5 | AN/MeOH | CoCl ₂ | 0 | 0 | 2.4 | - | 0 | | 6 | AN/MeOH | Ni ²⁺ -cyclam | 0 | 0 | 0.17 | _ | 0 | | 7 | AN/H2O | a) | 2.8 | 7.5 | 1.5 | 0.37 | 6.9 | | 8c) | AN/MeOH | a) | 52 | 34 | 3.4 | 1.5 | 25 | Table 1. Photochemical System for Generation of CO, HCO₂-, and H₂ from p-Terphenyl, [Co(cyclam)Cl₂]Cl, TEA, and CO₂ in CH₃CN/Methanol^b) the Ru(2,2'-bipyridine)₃²⁺-catalyzed photoreduction of CO₂.^{6,7)} These systems resulted in the formation of CO with H₂, suggesting the low selectivity for the reduction of CO₂ in water. However, the present system gave the enhanced selectivity shown by (CO + HCO₂⁻)/H₂ ratios, 7 to 10. In order to confirm the selectivity under H⁺rich conditions, the photoreaction was conducted in the presence of H₂O (run 7). Although the efficiency decreased to fair extent and the formation of HCO₂ increased, the photoreduction of CO₂ occur in preference to H⁺ or water reduction in the system. Interestingly, when triethanolamine (TEOA) was used instead of TEA as an electron donor, the highest yield and selectivity for photoreduction of CO2 were obtained (run 8), probably due to the higher solubility of CO₂. The apparent quantum yields, 0.15 and 0.10, were obtained for the formation of CO and HCO₂ in TEOA system at 313 nm, respectively. In conclusion, we have shown that Co^{3+} -cyclam is a highly efficient and selective electron mediator for p-terphenyl-catalyzed photoreduction of CO₂ to CO. Further mechanistic studies on this CO₂-photoreduction system are in progress. ## References - 1) I. Taniguchi, "Modern Aspects of Electrochemistry, No. 20,"ed by J. M. Bockris, R. E. White, and B. E. Conway, Plenum Publishing Corporation, New York (1989), p. 327 and references cited therein. - 2) S. Matsuoka, T. Kohzuki, C. Pac, and S. Yanagida, Chem. Lett., 1990, 2047. - 3) B. Fisher and R. Eisenberg, J. Am. Chem. Soc., 102, 7361 (1980). - 4) M. Beley, J. -P. Collin, R. Ruppert, and J. -P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986). - 5) B. Bosnich, C. K. Poon, and M. L. Tobe, *Inorg. Chem.*, 4, 1102 (1965); B. Bosnich, M. L. Tobe, and G. A. Webb, *ibid.*, <u>4</u>, 1109 (1965). - 6) A. H. A. Tinnemans, T. P. M. Koster, D. H. M. W. Thewissen, and A. Mackor, Recl. Trav. Chim. Pays-Bas, 103, 288 (1984). - 7) J. L. Grant, K. Goswami, L. O. Spreer, J. W. Otvos, and M. Calvin, J. Chem. Soc., Dalton Trans., 1987, 2105. (Received August 19, 1991) ^{a) Present in reaction solution prior to photolysis; b) After irradiation at > 290 nm for 1 h. c) With TEOA instead of TEA.}